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Abstract. Computational analysis of systems governed by partial differential equations (PDEs)
requires not only the calculation of a solution but the extraction of additional information such as
the sensitivity of that solution with respect to input parameters or the inversion of the system in
an optimization or design loop. Moving beyond the automation of discretization of PDEs by finite
element methods, we present a mathematical framework that unifies the discretization of PDEs with
these additional analysis requirements. In particular, Fréchet differentiation on a class of functionals
together with a high-performance finite element framework has led to a code, called Sundance,
that provides high-level programming abstractions for the automatic, efficient evaluation of finite
variational forms together with the derived operators required by engineering analysis.
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1. Introduction. Advanced simulation of realistic systems governed by partial
differential equations (PDEs) can require a significant collection of operators beyond
evaluating the residual of the nonlinear algebraic equations for the system solution.
As a first example, Newton’s method requires not only the residual evaluation but
also the formation or application of the Jacobian matrix. Beyond this, sensitivity
analysis, optimization, and control require even more operators that go beyond what
is implemented in standard simulation codes. We describe algorithms requiring addi-
tional operators beyond a black-box residual evaluation or system matrix as embedded.
In this paper we concentrate on producing operators for embedded linearization, op-
timization, and sensitivity analysis, but we point out that the issue of producing
auxiliary operators also arises in the contexts of physics-based preconditioning and
embedded uncertainty quantification.

Traditional automatic differentiation (AD) tools [16] bridge some of the gap be-
tween what is implemented and what modern embedded algorithms require. For ex-
ample, AD is very effective at constructing code for Jacobian evaluation from code for
residual evaluation and finding adjoints or derivatives needed for sensitivity. However,
AD tools can only construct operators that are themselves derivatives of operators
already implemented in an existing code.
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Further, implementing these operators efficiently and correctly typically presents
its own difficulties. While the necessary code is typically compact, it requires the
programmer to hold together knowledge about meshes, basis functions, numerical
integration, and many other techniques. Current research projects aim to simplify
this process. Some of these, such as the widely used Deal.II library [5], provide in-
frastructure for handling meshes, basis functions, assembly, and interfaces to linear
solvers. Other projects, such as Analysa [4] and FFC [24, 25] use a high-level input
syntax to generate low-level code for assembling variational forms. Yet other projects,
such as Life [35] and FreeFEM [19], provide domain-specific language for finite ele-
ment computation, either by providing a grammar and interpreter for a new language
(FreeFEM) or by extending an existing language with library support for variational
forms (Life). We also include in this category more recent FEniCS projects such as
UFL [1], which is a language specification for finite element methods, and UFC [2], a
compiler for UFL similar to ffc.

Our present work, encoded in the open-source project Sundance [43, 30, 31], uni-
fies these two perspectives of differentiation and automation by developing a theory
in which formulae for even simple forward operators such as stiffness matrices are
obtained through run-time Fréchet differentiation of variational forms. Like many
finite element projects described above, our work also provides interfaces to meshes,
basis functions, and solvers, but our formalism for obtaining algebraic operators via
differentiation appears to be new in the literature. While, mathematically, our ver-
sion of AD is similar to that used in [16], we differentiate at a more abstract level
on representations of functionals to obtain low-level operations rather than writing
those low-level operations by traditional means and then differentiating. Also, we
require differentiation with respect to variables that themselves may be (derivatives
of) functions and rules that can distinguish between spatially variable and constant
expressions. These techniques are typically not included in AD packages. While this
complicates some of our differentiation rules, it provides a mechanism for automat-
ing the evaluation of variational forms. Sundance is a C++ library for symbolically
representing, manipulating, and evaluating variational forms, together with necessary
lower-level finite element tools.

Sundance is open-source code, freely available as part of the Trilinos suite of
mathematical software [20, 21].

Automated evaluation of finite element operators by Sundance or other codes pro-
vides a smooth transition from problem specification to production-quality simulators,
bypassing the need for intermediate stages of prototyping and optimizing code. When
all variational forms of a general class are efficiently evaluated, each form is not imple-
mented, debugged, and optimized as a special case. This increases code correctness
and reliability once the internal engine is implemented. Generation and optimiza-
tion of algorithms from an abstract specification is receiving considerable attention
in several areas of numerical computing. Most work in this area has concentrated on
lower-level computational kernels. For examples, the Smart project of Püschel and
coauthors [12, 13, 36, 37, 38] algebraically finds fast signal processing algorithms and
is attached to a domain-specific compiler for these kinds of algorithms. In numerical
linear algebra, the Flame project led by van de Geijn (see [6, 17]) demonstrates how
correct, high-performance implementations of matrix computations may be derived
by formal methods. Like these projects, Sundance uses inherent, domain-specific
mathematical structure to automate numerical calculations.

In this paper, we present our mathematical framework for differentiation of vari-
ational forms, survey our efficient software implementation of these techniques, and



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

UNIFIED EMBEDDED PARALLEL FE COMPUTATIONS 3325

present examples indicating some of the code’s capabilities. Section 2 provides a
unifying mathematical presentation of forward simulation, sensitivity analysis, eigen-
value computation, and optimization from our perspective of differentiation. Section 3
provides an overview of the Sundance software architecture and evaluation engine, in-
cluding some indications of how we minimize the overhead of interpreting variational
forms at run-time. We illustrate Sundance’s capabilities with a series of examples
in sections 2.2.1, 2.3.1, 2.4.1, and 4 and then present some concluding thoughts and
directions for future development in section 5. Many of our examples include code
segments as needed; a complete code listing for an advection-diffusion equation is
included as an appendix.

2. A unified approach to multiple problem types through functional
differentiation.

2.1. Functional differentiation as the bridge from symbolic to discrete.
We consider PDEs on a d-dimensional spatial domain Ω. We will use lowercase italic
symbols such as u, v for functions mapping Ω → R. We will denote arbitrary function
spaces with uppercase italic letters such as U, V. Operators act on functions to produce
new functions. We denote operators by calligraphic characters such as F ,G. Finally,
a functional maps one or more functions to R; we denote functionals by uppercase
letters such as F,G and put arguments to functionals in square brackets. As usual,
x, y, and z represent spatial coordinates.

Note that the meaning of a symbol such as F(u) is somewhat ambiguous. It
can stand both for the operator F acting on the function u, and for the function
F(u(x)) that is the result of this operation. This is no different from the familiar
useful ambiguity in writing f(x) = ex, where we often switch at will between referring
to the operation of exponentiation of a real number and the value of the exponential
of x.

To differentiate operators and functionals with respect to functions, we use the
Fréchet derivative ∂F

∂u (see, e.g., [10]) defined implicitly through

lim
‖h‖→0

‖F(u+ h)−F(u)− ∂F
∂u h‖

‖h‖ = 0.

The Fréchet derivative of an operator is itself an operator, and thus as per the pre-
ceding paragraph, when acting on a function, the symbol ∂F

∂u can also be considered
a function. In the context of a PDE we will encounter operators that may depend
not only on a function u but on its spatial derivatives such as Dxu. As is often done
in elementary presentations of the calculus of variations (e.g., [42]), we will find it
useful to imagine u and Dxu as distinct variables, and write F(u,Dxu) for an op-
erator involving derivatives. Differentiating with respect to a variable that is itself
a derivative of a field variable is a notational device commonly used in Lagrangian
mechanics (e.g., [3, 39]) and field theory (e.g., [7, 8]), and we will use it throughout
this paper. This device can be justified rigorously via the Fréchet derivative.

We now consider some space U of real-valued functions over Ω. For simplicity
of presentation we assume for the moment that all differentiability and integrability
conditions that may arise will be met. Introduce a discrete N -dimensional subspace
Uh ⊂ U spanned by a basis {φi(x)}Ni=1, and let u ∈ Uh be expanded as u(x) =∑N

i=1 uiφi(x), where {ui} ⊂ R
N is a vector of coefficients. When we encounter a

functional F [u] =
∫ F(u) dΩ, we can ask for the derivative of F with respect to each
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expansion coefficient ui. Formal application of the chain rule gives

∂F

∂ui
=

∫
∂F
∂u

∂u

∂ui
dΩ(2.1)

=

∫
∂F
∂u

φi(x) dΩ,(2.2)

where ∂F
∂u is a Fréchet derivative.

The derivative of a functional involving u and Dxu with respect to an expansion
coefficient is

(2.3)
∂F

∂ui
=

∫
∂F
∂u

φi(x) dΩ +

∫
∂F

∂(Dxu)
Dxφi(x) dΩ.

Equation (2.3) contains three distinct kinds of mathematical objects, each of
which plays a specific role in the structure of a simulation code.

1. ∂F
∂ui

, which is a vector in R
N . This discrete object is typical of the sort of

information to be produced by a simulator’s discretization engine for use in
a solver or optimizer routine.

2. ∂F
∂u and ∂F

∂(Dxu)
, which are Fréchet derivatives acting on an operator F . The

operator F is a symbolic object, containing by itself no information about
the finite-dimensional subspace on which the problem will be discretized. Its
derivatives are likewise symbolic objects.

3. Terms such as φi and Dxφi, which are spatial derivatives of a basis function.
Equation (2.3) is the bridge leading from a symbolic specification of a problem as a

symbolic operatorF to a discrete vector for use in a solver or optimizer algorithm. The
central ideas in this paper are that (1) the discretization of many apparently disparate
problem types can be represented in a unified way through functional differentiation
as in (2.3), and (2), that this ubiquitous mathematical structure provides a path for
connecting high-level symbolic problem representations to high-performance low-level
discretization components.

2.2. Illustration in a scalar forward nonlinear PDE. The weak form of a
scalar PDE for u ∈ V in d spatial dimensions will be the requirement that a functional
of two arguments

(2.4) G [u, v] =
∑
r

∫
Ωr

Gr ({Dαv}α, {Dβu}β, x) dμr

be zero for all v in some subspace V̂ . The operators Gr are homogeneous linear
functions of v and its derivatives, but can be arbitrary nonlinear functions of u, its
derivatives, and the independent spatial variable x ∈ R

d. We use the notation Dαf to
indicate partial differentiation of f with respect to the combination of spatial variables
indicated by the multi-index α. When we use a set {Dαu}α as the argument to Gr,
we mean that Gr may depend on any one or more members of the set of partial
spatial derivatives of u. The summation is over geometric subregions Ωr, which may
include lower-dimension subsets such as portions of the boundary. The integrand
Gr may take different functional forms on different subregions; for example, it will
usually have different functional forms on the boundary and on the interior. Finally,
note that we may use different measures dμr on different subdomains; this allows, for
instance, the common practice of enforcing Dirichlet boundary conditions by fixing
values at nodes.
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As usual we discretize u on a finite-dimensional subspace V h and also consider
only a finite-dimensional space V̂ h of test functions; we then expand u and v as a linear
combination of basis vectors φ ∈ V h and ψ ∈ V̂ h,

(2.5) u =
N∑
j=1

ujφj(x),

(2.6) v =

N∑
i=1

viψi(x).

The requirement that (2.4) hold for all v ∈ V is met by ensuring that it holds for each
of the basis vectors ψi. Because each G has been defined as a homogeneous linear
functional in v, this condition is met if and only if

(2.7)
∂G

∂vi
=

∑
r

∑
α

∫
Ωr

∂Gr

∂(Dαv)
Dαψi dμr = 0.

Repeating this process for i = 1 to N gives N (generally nonlinear) equations in the
N unknowns uj . We now linearize (2.7) with respect to u about some u(0) to obtain
a system of linear equations for the full Newton step δu,

(2.8)
∂G

∂vi
+

∂2G

∂vi∂uj

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
u
(0)
j

δuj = 0.

In the case of a linear PDE (or one that has already been linearized with an alternative
formulation, such as the Oseen approximation to the Navier–Stokes equations [14]),
the “linearization” would be done about u(0) = 0, and δu is then the solution of the
PDE.

Writing the above equation out in full, we have

(2.9)

[∑
r

∑
α

∫
Ωr

∂Gr

∂(Dαv)
Dαψi dμr

]

+
∑
j

δuj

⎡
⎣∑

r

∑
α

∑
β

∫
Ωr

∂2Gr

∂(Dαv) ∂(Dβu)
DαψiDβφj dμr

⎤
⎦ = 0.

The two bracketed quantities are the load vector fi and stiffness matrix Kij , respec-
tively.

With this approach, we can compute a stiffness matrix and load vector by quadra-
ture provided that we have computed the first and second order Fréchet derivatives
of Gr. Were we free to expand Gr algebraically, it would be simple to compute these
Fréchet derivatives symbolically, and we could then evaluate the resulting symbolic
expressions on quadrature points. We have devised an algorithm and associated data
structure that will let us compute these Fréchet derivatives in place, with neither
symbolic expansion of operators nor code generation, saving us the combinatorial ex-
plosion of expanding Gr and the overhead and complexity of code generation. The
relationship between our approach and code generation is discussed further in sec-
tion 3.

It should be clear that generalization beyond scalar problems to vector-valued
and complex-valued problems, perhaps with mixed discretizations, is immediate.
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2.2.1. Example: Galerkin discretization of Burgers’ equation. As a con-
crete example, we show how a Galerkin discretization of Burgers’ equation appears
in the formulation above. Consider the steady-state Burgers’ equation on the one-
dimensional domain Ω = [0, 1],

(2.10) uDxu = cDxxu.

We will ignore boundary conditions for the present discussion; in the next section we
explain how boundary conditions fit into our framework. The Galerkin weak form of
this equation is

(2.11)

∫ 1

0

[vuDxu+ cDxvDxu] dx = 0 ∀v ∈ H1
Ω.

To cast this into the notation of (2.4), we define

(2.12) G = vuDxu+ cDxv Dxu.

The nonzero derivatives appearing in the linearized weak Burgers’ equation are shown
in Table 1. The table makes clear the correspondence between differentiation variables
and basis combination and between derivative value and coefficient in the linearized,
discretized weak form.

Table 1

This table shows for the Burgers’ equation example the correspondence, defined by (2.12), be-
tween functional derivatives, coefficients in weak forms, and basis function combinations in weak
forms. Each row shows a particular functional derivative, its compact representation as a multiset,
the value of the derivative, the combination of basis function derivatives extracted via the chain rule,
and the resulting term in the linearized, discretized weak form.

Derivative Multiset Value Basis combination Integral

∂G
∂v

{v} uDxu φi

∫
uDxuφi

∂G
∂Dxv

{Dxv} cDxu Dxφi

∫
cDxuDxφi

∂2G
∂v ∂u

{v, u} Dxu φiφj

∫
Dxuφiφj

∂2G
∂v ∂Dxu

{v,Dxu} u φiDxφj

∫
uφiDxφj

∂2G
∂Dxv ∂Dxu

{Dxv,Dxu} c DxφiDxφj

∫
cDxφiDxφj

The user-level Sundance code to represent the weak form on the interior is

Expr eqn = Integral(interior, c*(dx*u)*(dx*v) + v*u*(dx*u), quad);,

where interior and quad specify the domain of integration and the quadrature
scheme to be used, and the other variables are symbolic expressions. Example re-
sults are shown in section 2.3.1 in the context of sensitivity analysis.

2.2.2. Representation of Dirichlet boundary conditions. Dirichlet bound-
ary conditions can fit into our framework in several ways, including the symmetrized
formulation of Nitsche [32] and a simple generalization of the traditional row-
replacement method. The Nitsche method augments the original weak form in a
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manner that preserves consistency, coercivity, and symmetry; as far as software is
concerned, the additional terms require no special treatment and need not be dis-
cussed further in this context.

The most widely used method for imposing Dirichlet boundary conditions is to
replace rows in the discrete linear system by equations that force the solution to take
on specified boundary values. This is usually done by postprocessing the assembled
matrix and vector. Because this postprocessing is done to the discretized system, it
has sometimes been said that a symbolic system such as ours cannot be used to specify
boundary conditions with the row-replacement method. We will therefore discuss why
it is desirable to represent Dirichlet boundary conditions through symbolic expressions
and then explain how such a representation can be used to specify a row-replacement
method.

First, note that in the context of embedded algorithms it would not be suitable
to use a “hybrid” approach in which we specify internal equations with symbolic
expressions, discretize them as described above, and then apply Dirichlet boundary
conditions by postprocessing the discrete equations according to some other (nonsym-
bolic) specification. For example, in optimization problems in which design variables
appear in the boundary conditions, it is necessary to differentiate the boundary con-
ditions with respect to these design variables. It is therefore desirable to represent
the boundary conditions using our differentiation-based formulation.

Fortunately, that representation is rather simple: the only modification to the
system described above is to “tag” certain expressions as replacement-style boundary
conditions. These expressions are then discretized as any other, but their tagged
status then indicates that upon assembly, their row data replaces that produced by
any untagged (i.e., nonboundary condition) expressions. The content of the boundary
condition rows is produced through our differentiation-based discretization system,
just like any other row, enabling differentiation as needed for embedded algorithms.
The boundary row “tag” then directs replacement.

Thus, both the row replacement method and Nitsche’s method are available in
our formulation. With either method, differentiation is enabled throughout, allowing
the use of embedded algorithms on problems with design variables on boundaries.

2.3. Sensitivity analysis. In sensitivity analysis, we seek the derivatives of a
field u with respect to a parameter p. When u is determined through a forward
problem of the form (2.4), we do implicit differentiation to find

(2.13)
∑
r

∑
β

∫
Ωr

[
∂Gr

∂Dβu
Dβ(

∂u

∂p
) +

∂Gr

∂p

]
dμr = 0 ∀v ∈ V̂ .

Differentiating by vi to obtain discrete equations gives

(2.14)
∑
r

∑
α

[∫
Ωr

∂2Gr

∂Dαv ∂p
Dαψi dμr

]

+
∑
j

∂uj
∂p

⎡
⎣∑

r

∑
α

∑
β

∫
Ωr

∂2Gr

∂Dαv ∂Dβu
DαψiDβφj dμr

⎤
⎦ = 0.

This has the same general structure as the discrete equation for a Newton step; the
only change has been in the differentiation variables. Thus, the mathematical frame-
work and software infrastructure outlined above are immediately capable of perform-
ing sensitivity analysis given a high-level forward problem specification.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

3330 K. LONG, R. KIRBY, AND B. VAN BLOEMEN WAANDERS

2.3.1. Example: Sensitivity analysis of Burgers’ equation. We now show
how this automated production of weak sensitivity equations works in the context of
the one-dimensional Burgers’ equation example from section 2.2.1.

To produce an easily solvable parametrized problem, we apply the method of
manufactured solutions [40, 41] to construct a forcing term that produces a convenient,
specified solution. We define a function

f(p, x) = p
(
px

(
2x2 − 3x+ 1

)
+ 2

)
,

where p is a design parameter. With this function as a forcing term in the steady-state
Burgers’ equation,

uux = uxx + f(p, x), u(0) = u(1) = 0,

we find that the solution is u(x) = px(1− x). The sensitivity ∂u
∂p is x(1 − x).

Now consider the sensitivity of solutions to (2.11) to the parameter p. The Fréchet
derivatives appearing in the second set of brackets in (2.14) are identical to those com-
puted for the linearized forward problem; as is well known, the matrix in a sensitivity
problem is identical to the problem’s Jacobian matrix. The derivatives in the first set
of brackets are summarized in Table 2. Notice that in this example, the derivative
{Dxv, p} is identically zero; this fact can be identified in a symbolic preprocessing
step so that it is ignored in all numerical calculations.

Table 2

This table shows the terms in the first brackets of (2.14) that arise in the Burgers’ sensitivity
example described in the text.

Derivative Multiset Value Basis combination Integral

∂2G
∂v ∂p

{v, p} ∂f
∂p

φi

∫ ∂f
∂p

φi

∂2G
∂Dxv ∂p

{Dxv, p} 0 Dxφi 0

Next we show the user-level C++ code for setting up this problem using objects
from the Sundance toolkit. Initialization code and construction of some objects (such
as mesh) are omitted, but a brief description of the object types is in order. Most
Sundance objects are reference-counted handles, so we have transparent memory man-
agement and polymorphism at the user level without need for explicit use of pointers.
Class Expr is a polymorphic handle for symbolic expressions. Objects u and v are
expressions of type UnknownFunction and TestFunction, respectively. The basis for
these expressions has been specified at construction. Objects x and dx represent the
spatial coordinate x and the spatial differential operator ∂

∂x , respectively. The ob-
jects interior, leftPoint, and rightPoint are CellFilter objects and are used to
specify which mesh cells are used in a particular integration. NonlinearProblem is an
object that is responsible for building Jacobians and residuals given a specification of
the weak forms and the mesh. Finally, the objects solver and linSolver are handles
to nonlinear and linear solvers, respectively, from the Trilinos toolkit. More complete
documentation for the objects used in this example is distributed with the Sundance
source code. Here is the code for the steady-state Burgers’ problem.
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Steady forced Burgers example: solution and parametric sensitivity

 

 
exact
u
sens
exact sens

Fig. 1. Solution and sensitivity for steady-state Burgers’ equation. The sensitivity is with
respect to the parameter p defined in the text. The symbols indicate the numerical results computed
by Sundance; the solid and dashed lines indicate the exact curves for the solution and sensitivity.

/* Define expressions for parameters */

Expr p = new UnknownParameter("p");

Expr p0 = new Sundance::Parameter(2.0);

/* Define the forcing term */

Expr f = p * (p*x*(2.0*x*x - 3.0*x + 1.0) + 2.0);

/* Define the weak form for the forward problem */

Expr eqn = Integral(interior, (dx*u)*(dx*v) + v*u*(dx*u) - v*f, quad);

/* Define the Dirichlet BC */

Expr bc = EssentialBC(leftPoint+rightPoint, v*u, quad);

/* Create a NonlinearProblem object that manages discretization

* of the equations on the specified mesh */

NonlinearProblem prob(mesh, eqn, bc, v, u, u0, p, p0, vecType);

/* Use NOX to solve the nonlinear system for the forward problem */

NOX::StatusTest::StatusType status = prob.solve(solver);

/* compute sensitivities */

Expr sens = prob.computeSensitivities(linSolver);

Note that the user never explicitly sets up sensitivity equations; rather, the forward
problem is created with the design parameters defined as UnknownParameter expres-
sions. The same NonlinearProblem object supports discretization and solution of
both the forward problem and the sensitivity problem. Numerical results are shown
in Figure 1.

2.4. PDE-constrained optimization. PDE-constrained optimization meth-
ods pose difficult implementation issues for monolithic production codes that from
initial conception have not been instrumented to perform efficiently certain nonstan-
dard operations. For instance, the gradient of the objective function can be calculated
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using forward sensitivities or adjoint-based sensitivities which require access to the
Jacobian and its transpose and the calculation of additional derivatives. Our mathe-
matical framework and software infrastructure completely avoid such low-level details.
By applying Fréchet differentiation to a Lagrangian functional the optimality condi-
tions are automatically generated.

To more concretely explain these ideas, we formulate a constrained optimization
problem and follow the typical solution strategy of taking variations of a Lagrangian
with respect to the state, adjoint, and optimization variables. First, we formulate the
minimization of a functional of the form

(2.15) F (u, p) =
∑
r

∫
Ωr

Fr(u, p, x) dμr

subject to equality constraints written in weak form as

(2.16) λTG(u, p) =
∑
r

∫
Ωr

Gr(u, p, λ, x) dμr = 0 ∀λ ∈ V̂ .

The constraint densities Gr are assumed to be linear and homogeneous in λ, but can
be nonlinear in the state variable u and the design variable p. We form a Lagrangian
functional L = F−λTG, with Lagrangian densities Lr = Fr−Gr. It is well known [10]
that the necessary condition for optimality is the simultaneous solution of the three
equations

∂L

∂u
=
∂L

∂p
=
∂L

∂λ
= 0.(2.17)

In a so-called all-at-once or simultaneous analysis and design (SAND) method [43],
we solve these equations simultaneously, typically by means of a Newton or quasi-
Newton method. In a reduced space or nested analysis and design (NAND) method,
we solve successively the state and adjoint equations, respectively, ∂L

∂λ = 0 and ∂L
∂u = 0,

while holding the design variables p fixed. The results are then used in calculation
of the reduced gradient ∂F

∂p for use in a gradient-based optimization algorithm such
as limited-memory BFGS. In either the SAND or NAND approach, the required
calculations still fit within our framework: we represent Lr symbolically, and then
carry out the Fréchet derivatives necessary to form discrete equations. In a SAND
calculation, derivatives with respect to all variables are computed simultaneously,
whereas in each stage of a NAND calculation two of the variables are held fixed while
differentiation is done with respect to the third.

For example, the discrete adjoint equation in a NAND calculation is

(2.18)

[∑
r

∑
α

∫
Ωr

∂Lr

∂(Dαu)
Dαψi dμr

]

+
∑
j

λj

⎡
⎣∑

r

∑
α

∑
β

∫
Ωr

∂2Lr

∂(Dαu) ∂(Dβλ)
DαψiDβφj dμr

⎤
⎦ = 0.

The state and design equations are obtained similarly, by a permutation of the differ-
entiation variables. In a SAND approach, the discrete, linearized equality-constrained
KKT equations are

(2.19)

⎡
⎣ Lλu Lλλ Lλp

Luu Luλ Lup

Lpu Lpλ Lpp

⎤
⎦
⎡
⎣ δu
δλ
δp

⎤
⎦+

⎡
⎣ Lu

Lλ

Lp

⎤
⎦ = 0,
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where the elements of the matrix blocks above are computed through integrations
such as

(2.20) Lλiuj =
∑
r

∑
α

∑
β

∫
Ωr

[
∂2Lr

∂(Dαλ) ∂(Dβu)
DαψiDβφj dμr

]
.

Note that because we form discrete problems through differentiation of a La-
grangian, rather than differentiation of a forward solver, our framework leads natu-
rally to the “optimize then discretize” formulation of a discrete optimization problem,
in which adjoints and derivatives are taken at the continuous level, then discretized.
By contrast, retrofitting an existing forward solver to provide derivatives via auto-
matic differentiation tools (in either forward or backward mode AD) cannot recover
the adjoint of the continuous operator. What is done in practice is to use the ad-
joint of the discretized forward operator, a formulation known as “discretize then
optimize.” In general, the adjoint of the discretized forward operator is not equal to
the discretization of the adjoint operator. The “discretize then optimize” formulation
is known [11] to have inferior convergence properties on certain problems compared
to “optimize then discretize.” By introducing the adjoint variable explicitly at the
continuous level, and by deriving both the forward and adjoint operators through
differentiation of a continuous Lagrangian, our approach automatically provides the
correct optimized-then-discretized operators.

2.4.1. Example: PDE-constrained optimization problem. To demonstrate
this capability we consider a contrived optimization problem in which minimization
of a quadratic objective function is constrained by a simple nonlinear PDE. This
problem is formulated as

min
u,α

1

2

∫
Ω

(u− u∗)2 dΩ +
R

2

∫
Ω

α2 dΩ

subject to

∇2u+ 2π2u+ u2 = α

and Dirichlet boundary condition u(∂Ω) = 0. The Lagrangian for this problem is,
after integration by parts,

L =

∫
Ω

[
1

2
(u− u∗)2 +

R

2
α2 +∇λ · ∇u − λ

(
2π2u+ u2

)
+ λα dΩ

]
+

∫
∂Ω

λu dΩ.

We can represent the Lagrangian as a Sundance Functional object using the code
in Figure 2. Differentiation of the Lagrangian with respect to specified variables is
then carried out via calls to certain member functions. It should be re-emphasized
that differentiation of the functional object does not produce a new expression graph
as when doing symbolic differentiation; rather, it annotates the existing expression
graph with instructions for in-place evaluation of the requested derivatives. In this
step, either a SAND or a NAND approach can be chosen as directed by the selection
of differentiation variables.

Even such a simple nonlinear problem is analytically intractable, so rather than
choose a target u∗ and then attempt to solve a nonlinear PDE, we again use the
method of manufactured solutions to produce the target u∗ that yields a specified
solution u. From the assumed solution u = sinπx sinπy we derive, successively,

α = sin2 πx sin2 πy,(2.21)

λ = −R sin2 πx sin2 πy,(2.22)
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Expr mismatch = u-uStar;

Expr fit = Integral(interior, 0.5*mismatch*mismatch, quad);

Expr reg = Integral(interior, 0.5*R*alpha*alpha, quad);

Expr g = 2.0*pi*pi*u + u*u;

Expr constraint = Integral(interior, (grad*u)*(grad*lambda)

- lambda*g + lambda*alpha, quad);

Expr lagrangian = fit + reg + constraint;

Expr bc = EssentialBC(top+bottom+left+right, lambda*u, quad);

Functional L(mesh, lagrangian, bc, vecType);

Fig. 2. Code listing for setting up a model PDE-constrained optimization problem using Sun-
dance.

Fig. 3. State, adjoint, and optimization solutions.

and, finally,

(2.23) u∗ = 2π2R cos2 πy sin2 πx+ sinπy(sinπx+ 2π2R cos2 πx sin πy

− 2π2R sin2 πx sin πy + 2R sin3 πx sin2 πy).

Figure 3 shows the state, adjoint, and inversion solutions. As expected, the state
and adjoint responses are qualitatively similar though opposite in sign. The solution
of the optimization problem, i.e., the optimal design variable α, is shown in the far
right window pane.

3. Software architecture. The implementation of our formulation in interop-
erable software is simplified by noticing that (2.3) suggests a natural partitioning of
software components into the following three loosely coupled families:

1. Linear algebra components for matrices, vectors, and solvers. These appear
explicitly on the left-hand side of (2.3). In nonlinear problems, vectors rep-
resenting previous solution iterates will appear implicitly in the evaluation of
expressions such as F .
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2. Symbolic components for representation of expressions such as F and eval-
uation of its derivatives. We usually refer to these objects as “symbolic”
expressions; however, this is something of a misnomer because in the context
of discretization many expression types must often be annotated with non-
symbolic information such as basis type. A better description is “annotated
symbolic expressions” or “quasi-symbolic expressions.”

3. Discretization components for tasks such as evaluation of basis functions and
computation of integrals on meshes.

In the discussion of software in this paper we will concentrate on a high-level view
of the symbolic components, with a brief mention of mechanisms for interoperability
between our symbolic components and third-party discretization components. A de-
tailed explanation of the symbolic representation and evaluation system will follow in
a subsequent paper.

To be used in our context, a symbolic system must provide several key capabilities.
1. It must be possible to compute numerically the value of an expression and

its Fréchet derivatives at specified spatial points, e.g., quadrature points or
nodes. Such computations must be done in-place in a scalable way on a static
expression graph; that is, no symbolic manipulations of the graph should be
done other than certain trivial constant-time modifications.

2. This numerical evaluation of expression values should be done as efficiently
as possible.

3. Functions appearing in an expression must be annotated with an abstract
specification of their finite element basis. This enables the automated associ-
ation of the signature of a Fréchet derivative, i.e., a multiset of functions and
spatial derivatives, with a combination of basis functions. If, for example, the
function v is expanded in a basis {ψ} and the function u in a basis {φ}, the
association

∂2F
∂v ∂(Dxu)

→ ψDxφ

can be made automatically. It is this association that allows automatic bind-
ing of coefficients to elements.

4. It must be possible to specify differentiation with respect to arbitrary combi-
nations of variables.

5. Some expression types must be able to refer to discrete objects such as vectors
and mesh cells. However, this dependence on the discrete world must be
cleanly partitioned through a mediation interface.

3.1. Evaluation of symbolic expressions. A factor for both performance and
flexibility is to distinguish between expression representation and expression evalua-
tion, by which we mean that the components used to represent an expression graph
may not be those used to evaluate it. We use Evaluator components to do the ac-
tual evaluation. In simple cases, these form a graph that structurally mirrors the
expression to be evaluated, but when possible, expression nodes can be aggregated
for more efficient evaluation (for example, an expression input in the form x ·x ·x can
be recognized as equivalent to x3, so that a one-node power evaluator would be used
in place of a tree of product evaluators. Furthermore, it is possible to provide multiple
evaluation mechanisms for a given expression. For example, in addition to the default
numerical evaluation of an expression, one can construct an evaluator which produces
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string representations of the expression and its derivatives; we have in fact done so
for practical use during debugging.

Another useful alternative evaluation mechanism is to produce not numerical re-
sults but low-level code for computing numerical values of an expression and its deriva-
tive. Thus, while the default mode of operation for Sundance components is numerical
evaluation of interpreted expressions, these same components could be used to gener-
ate code. We therefore do not make a conceptual distinction between our approach
to finite element software and other approaches based on code generation, because
the possibility of code generation is already built into our design. However, as our
performance results will indicate, it seems that replacing our current implementation
with generated code does not seem necessary to achieve excellent performance.

Other applications of nonstandard evaluators would be to tune evaluation to hard-
ware architecture, for example, a multithreaded evaluator that distributes subexpres-
sion evaluations among multiple cores.

3.1.1. Mixing spatial and functional differentiation. An issue that arises
is the interplay of derivatives with respect to the spatial coordinates and derivatives
with respect to functions. We have already seen that derivatives such as ∂F

∂Dxu
may

appear in expressions. The complication presented by such derivatives is that they
can appear implicitly in cases where the “variable” Dxu does not appear explicitly.
For example, the expression

F = Dx

[
e2xu

]
has no explicit dependence on Dxu, but, of course, after computing the spatial deriva-
tive appearing in F to find

F = 2e2xu+ e2xDxu,

it is easily seen that

∂F
∂Dxu

= e2x.

However, with complicated expressions it is prohibitively expensive to compute all
spatial derivatives—which involves expanding the expression graph—before carrying
out functional differentiation.

The solution is to develop in-place functional differentiation rules for expressions
involving spatial derivatives. To illustrate the idea, consider the spatial chain rule
applied to an expression g that depends on a coordinate x and a function u,

(3.1) Dxg =
∂g

∂x
+
∂g

∂u
Dxu.

Note that ∂g
∂x is nonzero only if g depends explicitly on x. Differentiation of (3.1) with

respect to Dxu and u results in

(3.2)
∂

∂Dxu
(Dxg) =

∂g

∂u
,

(3.3)
∂

∂u
(Dxg) =

∂2g

∂u ∂x
+
∂2g

∂u2
Dxu.

These rules can be applied in-place concurrently with the evaluation of Dxg with no
need to expand the expression graph.
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Extension to multiple spatial variables, multiple functions, and higher order
derivatives presents notational difficulties, but is conceptually no more difficult than
the simple case considered here. The general case will be discussed in detail in our
upcoming paper on data flow analysis for in-place Fréchet differentiation.

3.2. Interoperability with discretization components. As foreshadowed
above, a challenge in the design of a symbolic expression evaluation system is that
some expressions depend explicitly on input from the discrete form of the problem. For
example, evaluation of a function u at a linearization point u0 requires interpolation
using a vector and a set of basis functions. Use of a coordinate function such as x in
an integral requires its evaluation at transformed quadrature points, which must be
obtained from a mesh component.

A guiding principle has been that the symbolic core should interact with other
components, e.g., meshes and basis functions, loosely through abstract interfaces
rather than through hardwired coupling; this lets us use others’ software components
for those tasks. We have provided reference implementations for selected compo-
nents, but the design is intended to use external component libraries as much as
possible. The appropriate interface between the symbolic and discretization compo-
nent systems is the mediator pattern [15], which provides a single point of contact
between the two component families. The handful of expression subtypes that need
discrete information (discrete functions, coordinate expressions, and cell-based expres-
sions such as cell normals arising in boundary conditions and cell diameters arising in
stabilization terms) access that information through calls to virtual functions of an
AbstractEvaluationMediator. Allowing use of discretization components with our
symbolic system is then merely a matter of writing an evaluation mediator subclass
in which these virtual functions are implemented.

A use case of the mediator is shown in Figure 4. Here, a product of a coordinate
expression x and a discrete function u0 is evaluated. The product evaluator calls the
evaluators for the two subexpressions, and their evaluators make appropriate calls to
the evaluation mediator.

3.3. Interoperability with solver components. Direct interaction between
the symbolic system and solver components is not needed; indirect interaction oc-
curs via discrete function evaluation mediated by the AbstractEvaluationMediator.
Construction of matrices and vectors, and their use in solvers, occurs within the dis-
cretization framework and requires no interaction with the symbolic components.

4. Numerical results.

4.1. A simple example. We first introduce a simple example to cover the
fundamental functionality of Sundance. We consider the advection-diffusion equation
on the unit square Ω. The bottom, top, left, and right sides of the square are called,
respectively, Γ1, Γ2, Γ3, and Γ4. The equation and boundary conditions are

V · ∇r − k ·Δr = 0 on Ω,(4.1)

r = 0 on Γ1,(4.2)

r = x on Γ2,(4.3)

r = 0 on Γ3,(4.4)

r = y on Γ4,(4.5)
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Fig. 4. Unified Modeling Language (UML) sequence diagram showing the evaluation of a prod-
uct of two framework-dependent expressions through calls to an evaluation mediator. The component
in shaded box is framework-dependent; others are framework-independent. Italicized text indicates
function calls, and underlined text indicates data returned through function calls. The returned in-
formation marked “values at quad points” need not be numerical values; it could be, for instance, a
string or possibly generated code.

where r represents concentration, k is the diffusivity, and V is the velocity field, which
in this case is set to potential flow:

Δu = 0 on Ω,(4.6)

u =
1

2
x2 on Γ1,(4.7)

u =
1

2

(
x2 − 1

)
on Γ2,(4.8)

u = −1

2
y2 on Γ3,(4.9)

u = 1− 1

2
y2 on Γ4.(4.10)

In weak form the advection-diffusion equation is written as∫
Ω

∇s · ∇r +
∫
Ω

s · V · ∇r = 0 on Ω,(4.11)

where V = ∇u and s is the Lagrange polynomial test function. This equation is
represented very compactly in terms of expression objects as

Expr adEqn = Integral(Omega, (grad*s)*(grad*r), quad2)

+ Integral(Omega, s*V*(grad*r), quad4);,
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Fig. 5. Advection-diffusion solution.

where the quad2 and quad4 arguments are objects that specify the quadrature rule
used to evaluate each integral. Boundary conditions are specified using similar objects.
The internal mesher is used to create a finite element domain of 50 ∗ 50 simplicial el-
ements in two dimensions. Figure 5 shows the final concentration solution. The com-
plete Sundance code is included in the appendix, which includes basic boilerplate code
to enable boundary conditions, meshing, test and trial function definitions, quadrature
rules, interface for the linear solver, and postprocessing.

4.2. Single-processor timing results. While the run-time of simulations is
typically determined largely by the linear and nonlinear solvers, the extra overhead
of interpreting variational forms during matrix assembly could conceivably introduce
a new bottleneck into the computation.

Timings of Sundance code shown here were carried out using version 10.0 of
Trilinos.

4.3. Comparison to DOLFIN. Here, we compare the performance of Sun-
dance to another high-level finite element method tool, DOLFIN [29], for assembling
linear systems for the Poisson and Stokes operators. All of our DOLFIN experiments
use code for element matrix computation generated offline by ffc rather than the just-
in-time compiler strategy available in PyDOLFIN, so the DOLFIN timings include no
overhead for the high-level representation of variational forms. Both codes assemble
stiffness matrices into an Epetra matrix, so the runs are normalized with respect to
the linear algebra back end. The timings in both cases include the initialization of the
sparse matrix and evaluation and insertion of all local element matrices into an Epetra
matrix. Additionally, the Sundance timings include the overhead of interpreting the
variational forms. In both libraries, times to load and initialize a mesh are omitted.
It is our goal to assess the total time for matrix assembly, which will indicate whether
Sundance’s run-time interpretation of forms presents a problem, rather than report
detailed profiling of the lower-level components. All runs were done on a MacPro with
dual quad-core 2.8GHz processors and 32GB of RAM. Both Sundance and DOLFIN
were compiled with versions of the GNU compilers using options recommended by the
developers.

DOLFIN depends on the ffc project to generate code variational forms, and that
tool offers some alternate approaches. For the constant coefficient bilinear forms we
consider, the tensor contraction approach developed in [24, 25], which precomputes all
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Fig. 6. Timing results for Sundance and Dolfin assembly comparisons using the Poisson operator.

integrals on the reference element, is preferred over the quadrature mode developed
in [33]. The results shown were obtained using the tensor contraction approach. No
FErari-based optimizations [23, 27, 28, 26] were used in the ffc code. For the forms
we consider, these would improve the DOLFIN results by only a marginal amount [33].

In two dimensions, a unit square was divided into an N ×N square mesh, which
was then divided into right triangles to produce a three-line mesh. In three dimensions,
meshes of a unit cube with the reported numbers of vertices and tetrahedra were
generated using Cubit [34]. At this point, Sundance does not rely on an outside
element library and only provides Lagrange elements up to order three on triangles and
two on tetrahedra, while DOLFIN is capable of using higher order elements through
ffc’s interface to the FIAT project [22]. The Poisson equation had Dirichlet boundary
conditions on faces of constant x value and Neumann conditions on the remaining
faces. The Stokes simulations we performed had Dirichlet boundary conditions on
velocity over the entire boundary.

Figure 6 and Table 3 show times required to construct the Poisson global stiffness
matrices in each library. In all cases, the DOLFIN code actually takes somewhere
between a factor of 1.3 and 6 longer than the Sundance code. Figure 7 and Ta-
ble 4 indicate similar results for the Stokes equations, with the added issue that the
DOLFIN runs seemed to run out of memory on the finest meshes. It is interesting
that, even including symbolic overhead, Sundance outperforms the DOLFIN pro-
grams. We believe this is because Sundance makes very careful use of level 3 BLAS
to process batches of cells during the assembly process. It may also have to do with
discrete math/bandwidth issues in how global degrees of freedom are ordered. We
plan to report on the implementation details of the Sundance assembly engine in a
later publication.
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Table 3

Timings for assembling the Poisson matrix in DOLFIN and Sundance using linear and
quadratic elements. In both cases, Sundance requires less time.

Poisson assembly timings, 3D
Vertices Tets p = 1 p = 2

Sundance Dolfin Sundance Dolfin
142 495 0.003626 0.0192 0.01544 0.0278
874 3960 0.02283 0.152 0.129 0.228

6091 31680 0.1761 1.23 1.04 1.90
45397 253440 1.449 10.0 8.617 15.5
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Fig. 7. Timing results for Sundance and Dolfin assembly comparisons using the Stokes operator.

Table 4

Sundance significantly outperforms DOLFIN in assembling the Taylor–Hood discretization of
the Stokes operator on a range of tetrahedral meshes. Additionally, on the finest mesh, DOLFIN
reported an out-of-memory error.

Stokes assembly timings, 3D
Verts Tets p = 2; 1

Sundance Dolfin

142 495 0.07216 0.143
874 3960 0.6677 1.24

6091 31680 5.521 10.2
45397 253440 45.97 crash

4.3.1. Comparison to low-level C loops. In the next set of experiments we
examine the efficiency of the evaluation engine in comparison to low-level C code
for the same expressions. We compare the following three methods of evaluating a
sequence of univariate polynomials written in Horner’s form:

1. executing the evaluation tree built by the Sundance high-level symbolic ob-
jects;
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Fig. 8. Timing comparison between methods of polynomial evaluation.

2. computation by a standalone C loop, using no Sundance objects;
3. computation by a “plug-in” class that embeds raw C or C++ code in a

Sundance expression.
Results are shown in Figure 8. Evidently, evaluation through the expression tree

is 2–5 times slower than through a standalone C loop.
It is perhaps surprising that for a small polynomial order, evaluation by the

C++ plug-in is less efficient than evaluation through high-level symbolic expressions.
However, the plug-in interface is designed for evaluation of multivariable arguments,
so there is additional overhead for a simple single-variable argument.

4.3.2. Comparison of automated versus manual linearization. In our fi-
nal set of timing experiments we examine the efficiency of automating the full Newton
linearization of expressions. Given an expression object, Sundance can evaluate its
Fréchet derivatives in-place without doing symbolic transformations. Alternatively,
one can do the differentiation by hand, then construct an expression object for the
linearized form. The test cases we consider are

(4.12) u3∇u · ∇v,
which arises in the radiation diffusion equation, and the nonlinear advection term

(4.13) v · ((u · ∇)u) ,

which arises in the Euler and Navier–Stokes equations of fluid flow. Linearizing by
hand gives

(4.14) u30∇u0 · ∇v + u30∇w · ∇v + 3u20w∇u0 · ∇v
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and

(4.15) v · ((u0 · ∇)u0 + (u0 · ∇)w+ (w · ∇)u0) ,

where w and w are the Newton steps.
Results are shown in Figures 9 and 10. Each curve in Figure 9 is a ratio of

wall clock times: ratio of the time for a calculation with the hand-linearized expres-
sion (4.14) to the time for the same calculation using in-place derivative evaluation on
expression (4.12). Figure 10 shows the same results for (4.13) and (4.15). The timings
shown are for the complete matrix/vector assembly (circles), evaluation of expressions
(triangles), and matrix/vector fill (squares). Timings were averaged over 100 calcu-
lations at each of a range of two-dimensional mesh sizes; we expect no significant
changes in timing ratios as mesh size is varied. The matrix/vector fill timing ratios
were included as a baseline check: both modes of linearization compute and insert
exactly the same matrix and vector entries, so the timing ratios for matrix/vector fill
should be 1. Other than some noise, that appears to be the case.
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Fig. 9. Timing results for computations involving expressions (4.12) and (4.14).

In both test cases, evaluation of the hand-linearized expression is slightly (10–
20%) more expensive than automated in-place derivative evaluation. Because eval-
uation of the coefficient expressions is only part of the total assembly work (which
also includes local integrations and matrix/vector fill), this difference yields a nar-
rower (3–5%) advantage in total assembly time. These results are not unexpected, as
the in-place differentiation does the same calculations with less expression traversal
overhead.

4.4. Parallel timings. A design requirement is that efficient parallel computa-
tion should be transparent to the simulation developer. The novel feature of Sundance,
the differentiation-based intrusion, requires no communication and so should have no
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Fig. 10. Timing results for computations involving expressions (4.13) and (4.15).

Table 5

Sundance assembly demonstrates perfect weak scaling, where the problem size increases along
with the number of processors to give a constant amount of work per processor.

Processors 4 16 32 128 256
Assembly time (s) 54.5 54.7 54.3 54.4 54.4

impact on weak scalability. Table 5 shows assembly times for a model convection-
diffusion-reaction problem on up to 256 processors of ASC RedStorm at Sandia Na-
tional Laboratories. As expected, we see weak scalability on a multiprocessor archi-
tecture.

The scalability of the solve is another issue and depends critically on problem
formulation, boundary condition formulation, and preconditioner in addition to the
distributed matrix and vector implementation. An advantage of our approach is
that it provides the flexibility needed to simplify the development of algorithms for
scalable simulations. To provide low-level parallel services, we defer to a library such
as Trilinos [20].

4.5. Thermal-fluid coupling. As we have just seen, the run-time interpreta-
tion of variational forms does not adversely impact Sundance’s performance. More-
over, defining variational forms at run-time provides opportunities for code reuse.
Sundance variational forms may be defined without regard to the degree of polynomial
basis; efficiency is obtained without special-purpose code for each polynomial degree.
Besides this, the same functions defining variational forms may be reused in a variety
of ways, which may be useful in the context of nonlinear coupled problems. Namely,
we may use the object polymorphism of the Expr class to define variational forms
that can work uniformly on trial, test, or discrete functions. Because of the many
parameters needed to specify iteration strategies (fixed point versus Newton, contin-
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uation in dimensional parameters, preconditioning, inexact iterations, and adapting
tolerances), it is difficult to present timing results in this context. However, the results
of the previous sections indicate that the actual work of constructing matrices will be
performed efficiently in any of these contexts.

We apply this concept to a nonlinear coupled system, the problem of Benard
convection [18, 9]. In this problem, a Newtonian fluid is initially stationary, but is
heated from the bottom. The density of the fluid decreases with increasing temper-
ature. At a critical value of a certain parameter, the fluid starts to overturn. Fluid
flow transports heat, which in turn changes the distribution of buoyant forces.

In nondimensional form, the steady state of this system is governed by a coupling
of the Navier–Stokes equations and heat transport. Let u = (ux, uy) denote the
velocity vector, p the fluid pressure, and c the temperature of the fluid. The parameter
Ra is called the Rayleigh number and measures the ratio of energy from buoyant forces
to viscous dissipation and heat condition. The parameter Pr is called the Prandtl
number and measures the ratio of viscosity to heat conduction. The model uses
the Boussinesq approximation, in which density differences are assumed to alter the
momentum balance only through buoyancy forces. The model is

−Δu+ u · ∇u −∇p− Ra

Pr
ĉj = 0,

∇ · u = 0,

− 1

Pr
Δc+ u · ∇T = 0.

(4.16)

No-flow boundary conditions are assumed on the boundary of a box. The temperature
is set to 1 on the bottom and 0 on the top of the box, and no-flux boundary conditions
are imposed on the temperature on the sides.

This problem may be written in the variational form of finding u, p, c in the
appropriate spaces (including the Dirichlet boundary conditions) such that

(4.17) A[u, v]−B[p, v] +B[w, u] + C[u, u, v] +D[c, v] + E[u, c, q] = 0

for all test functions v = (vx, vy), w, and q, where the variational forms are

A[u, v] =

∫
Ω

∇u : ∇v dx,

B[p, v] =

∫
Ω

p∇ · v dx,

C[w, u, v] =

∫
Ω

w · ∇u · v dx,

D[c, v] =
Ra

Pr

∫
Ω

cvx dx,

E[u, c, q] =

∫
Ω

∇c · ∇q + (u · ∇c) q dx.

(4.18)

This standard variational form is suitable for inf-sup stable discretizations such as
Taylor–Hood. Convective stabilization such as streamline diffusion is also possible,
but is omitted for clarity of presentation.

While the full nonlinear system expressed by (4.17) may be directly defined and
differentiated for a Newton-type method in Sundance, typically a more robust (though
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Expr flowEquation( Expr flow , Expr lagFlow

Expr varFlow , Expr temp ,

Expr rayleigh, Expr inv_prandtl .

QuadratureFamily quad )

{

CellFilter interior = new MaximalCellFilter();

/* Create differential operators */

Expr dx = new Derivative(0); Expr dy = new Derivative(1);

Expr grad = List(dx, dy);

Expr ux = flow[0]; Expr uy = flow[1]; Expr u = List( ux , uy );

Expr lagU = List( lagFlow[0] , lagFlow[1] );

Expr vx = varFlow[0]; Expr vy = varFlow[1];

Expr p = flow[2]; Expr q = varFlow[2];

Expr temp0 = temp;

return Integral(interior,

(grad*vx)*(grad*ux) + (grad*vy)*(grad*uy)

+ vx*(lagU*grad)*ux + vy*(lagU*grad)*uy

- p*(dx*vx+dy*vy) - q*(dx*ux+dy*uy)

- temp0*rayleigh*inv_prandtl*vy,quad);

}

Fig. 11. Flow equations for convection. The Expr lagFlow argument can be equal to flow to
create nonlinear coupling, or as a DiscreteFunction to lag the convective velocity. Additionally, the
temp argument may be either an UnknownFunction or a DiscreteFunction.

more slowly converging) iteration is required to reach the ball of convergence for
Newton. One such possible strategy is a fixed-point iteration. Start with initial
guesses u0, p0, and T 0. Then, define ui+1 and pi+1 by the solution of

(4.19) A[ui+1, v]−B[pi+1, v] +B[w, ui+1] + C[ui, ui+1, v] +D[ci, v] = 0

for all test functions v and w, which is a linear Oseen-type equation with a forcing
term. Note that the previous iteration of temperature is used, and the convective
velocity is lagged so that this is a linear system. Then, ci+1 is defined as the solution of

(4.20) K[ui+1, ci+1, q] = 0,

which is solving the temperature equation with a fixed velocity ui+1.
We implemented both Newton and fixed-point iterations for P2/P1 Taylor–Hood

elements in Sundance, using the same functions defining variational forms in each
case. Using the run-time polymorphism of Expr, we wrote a function flowEquation

that groups the Navier–Stokes terms and buoyant forcing term, shown in Figure 11.
Then, to implement the iteration strategy, we formed two separate equations. The
first calls flowEquation, the actual UnknownFunction flow variables for flow, and
the previous iterate stored in a DiscreteFunction for lagFlow and for the temper-
ature. The second equation does the analogous thing in tempEquation, as shown in
Figure 12. This allows us to form two linear problems and alternately solve them.
After enough iterations, we used these same functions to form the fully coupled sys-
tem. If ux,uy,p,T are the UnknownFunction objects, the fully coupled equations are
obtained through the code in Figure 13.
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Expr tempEquation( Expr temp , Expr varTemp , Expr flow ,

Expr inv_prandtl ,

QuadratureFamily quad )

{

CellFilter interior = new MaximalCellFilter();

Expr dx = new Derivative(0); Expr dy = new Derivative(1);

Expr grad = List(dx, dy);

return Integral( interior ,

inv_prandtl * (grad*temp)*(grad*varTemp)

+ (flow[0]*(dx*temp)+flow[1]*(dy*temp))*varTemp ,

quad );

}

Fig. 12. Polymorphic implementation of temperature equation, where the flow variable may be
passed as a DiscreteFunction or an UnknownFunction variable to enable full coupling or fixed-point
strategies, respectively.

Expr fullEqn = flowEquation( List( ux , uy , p ) ,

List( ux , uy , p ) ,

List( vx , vy , q ) ,

T , rayleigh, inv_prandtl , quad )

+ tempEquation( T , w , List( ux , uy , p ) , inv_prandtl , quad );

Fig. 13. Function call to form fully coupled convection equations.

Benard convection creates many interesting numerical problems. We have already
alluded to the difficulty in finding an initial guess for a full Newton method. Moreover,
early in the iterations, the solutions change very little, which can deceive solvers into
thinking they have converged when they actually have not. A more robust solution
strategy (which could also be implemented in Sundance) would be solving a series of
time-dependent problems until a steady state has been reached. Besides difficulties
in the algebraic solvers, large Rayleigh numbers can lead to large fluid velocities,
which imply a high effective Peclet number and the need for stabilized methods in
the temperature equation.

Finally, our iteration technique is designed to illustrate the ease with which Sun-
dance supports various strategies such as fixed points and Newton methods. The
abstract differentiation techniques work uniformly in both cases to enable assembly
of system operators for the various linear and nonlinear problems. Other solution
strategies are also possible, such as using a continuation loop on the Rayleigh number
and solving each system by Newton iteration.

5. Conclusions and future work. The technology incorporated in Sundance
represents concrete mathematical and computational contributions to the finite ele-
ment community. We have shown how the diverse analysis calculations such as sen-
sitivity and optimization are actually instances of the same mathematical structure.
This mathematical insight drives a powerful, high-performance code; once abstrac-
tions for these functionals and their high-level derivatives exist in code, they may be
unified with more standard low-level finite element tools to produce a very powerful
general-purpose code that enables basic simulation as well as analysis calculations



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

3348 K. LONG, R. KIRBY, AND B. VAN BLOEMEN WAANDERS

essential for engineering practice. The performance numbers included here indicate
that we have provided a very efficient platform for doing these calculations, despite
the seeming disadvantage of run-time interpretation of variational forms.

In the future, we will develop additional papers documenting how the assembly
engine achieves such good performance as well as how the data flow for Sundance’s
automatic differentiation works. In addition, we will further improve the symbolic en-
gine to recognize composite differential operators (divergences, gradients, and curls)
rather than atomic partial derivatives. This will not only improve the top-level user
experience but allow for additional internal reasoning about problem structure. Be-
yond this, we are in the process of improving Sundance’s discretization support to
include more general finite element spaces such as Raviart–Thomas and Nédélec el-
ements, an aspect in which Sundance lags behind other codes such as DOLFIN and
Deal.II. Finally, the ability to generate new operators for embedded algorithms opens
up possibilities for simplifying the implementation of physics-based preconditioners.

Appendix. The following is the complete source code for the advection-diffusion
shown in section 4.1. Explanation of the classes and functions used can be found in
the documentation bundled with the Sundance source code.

// Sundance AD.cpp for Advection-Diffusion with Potential flow

#include ‘‘Sundance.hpp’’

CELL_PREDICATE(LeftPointTest, {return fabs(x[0]) < 1.0e-10;})

CELL_PREDICATE(BottomPointTest, {return fabs(x[1]) < 1.0e-10;})

CELL_PREDICATE(RightPointTest, {return fabs(x[0]-1.0) < 1.0e-10;})

CELL_PREDICATE(TopPointTest, {return fabs(x[1]-1.0) < 1.0e-10;})

int main(int argc, char** argv)

{

try

{

Sundance::init(&argc, &argv);

int np = MPIComm::world().getNProc();

/* linear algebra using Epetra */

VectorType<double> vecType = new EpetraVectorType();

/* Create a mesh */

int n = 50;

MeshType meshType = new BasicSimplicialMeshType();

MeshSource mesher = new PartitionedRectangleMesher(0.0, 1.0, n, np,0.0,

1.0, n, meshType);

Mesh mesh = mesher.getMesh();

/* Create a cell filter to identify maximal cells in the interior (Omega)

of the domain */

CellFilter Omega = new MaximalCellFilter();

CellFilter edges = new DimensionalCellFilter(1);

CellFilter left = edges.subset(new LeftPointTest());

CellFilter right = edges.subset(new RightPointTest());

CellFilter top = edges.subset(new TopPointTest());

CellFilter bottom = edges.subset(new BottomPointTest());
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/* Create unknown & test functions, discretized with first-order Lagrange

interpolants */

int order = 2;

Expr u = new UnknownFunction(new Lagrange(order), "u");

Expr v = new TestFunction(new Lagrange(order), "v");

/* Create differential operator and coordinate functions */

Expr dx = new Derivative(0);

Expr dy = new Derivative(1);

Expr grad = List(dx, dy);

Expr x = new CoordExpr(0);

Expr y = new CoordExpr(1);

/* Quadrature rule for doing the integrations */

QuadratureFamily quad2 = new GaussianQuadrature(2);

QuadratureFamily quad4 = new GaussianQuadrature(4);

/* Define the weak form for the potential flow equation */

Expr flowEqn = Integral(Omega, (grad*v)*(grad*u), quad2);

/* Define the Dirichlet BC */

Expr flowBC = EssentialBC(bottom, v*(u-0.5*x*x), quad4)

+ EssentialBC(top, v*(u - 0.5*(x*x - 1.0)), quad4)

+ EssentialBC(left, v*(u + 0.5*y*y), quad4)

+ EssentialBC(right, v*(u - 0.5*(1.0-y*y)), quad4);

/* Set up the linear problem! */

LinearProblem flowProb(mesh, flowEqn, flowBC, v, u, vecType);

ParameterXMLFileReader reader(searchForFile("bicgstab.xml"));

ParameterList solverParams = reader.getParameters();

cerr << "params = " << solverParams << endl;

LinearSolver<double> solver

= LinearSolverBuilder::createSolver(solverParams);

/* Solve the problem */

Expr u0 = flowProb.solve(solver);

/* Set up and solve the advection-diffusion equation for r */

Expr r = new UnknownFunction(new Lagrange(order), "u");

Expr s = new TestFunction(new Lagrange(order), "v");

Expr V = grad*u0;

Expr adEqn = Integral(Omega, (grad*s)*(grad*r), quad2)

+ Integral(Omega, s*V*(grad*r), quad4);

Expr adBC = EssentialBC(bottom, s*r, quad4)

+ EssentialBC(top, s*(r-x), quad4)

+ EssentialBC(left, s*r, quad4)

+ EssentialBC(right, s*(r-y), quad4);

LinearProblem adProb(mesh, adEqn, adBC, s, r, vecType);

Expr r0 = adProb.solve(solver);
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FieldWriter w = new VTKWriter("AD-2D");

w.addMesh(mesh);

w.addField("potential", new ExprFieldWrapper(u0[0]));

w.addField("potential2", new ExprFieldWrapper(u0[1]));

w.addField("concentration", new ExprFieldWrapper(r0[0]));

w.write();

}

catch(exception& e)

Sundance::handleException(e);

Sundance::finalize();

}
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[12] S. Egner and M. Püschel, Automatic generation of fast discrete signal transforms, IEEE
Trans. Signal Process., 49 (2001), pp. 1992–2002.
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